THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Solution to Quiz 1

1. (a) True. If there exists a line which contains all the points, then there exist no three noncollinear points which violates axiom I3.
(b) True. By axiom I3, there exist three noncollinear points P, Q and R. By axiom I1, there exist unique lines $l_{P Q}, l_{Q R}$ and $l_{R P}$ where each of the line passes through the indicated two points. Since P, Q and R are noncollinear, $l_{P Q}, l_{Q R}$ and $l_{R P}$ must be distinct. It shows that an incidence geometry contains at least 3 lines.
(c) False. Note that \mathbb{R}^{2} with lines in usual sense is an incidence geometry. However, consider $x=1$ and $x=2$ which are lines in \mathbb{R}^{2}, they do not have any intersection point.
2. (a) Let m and n be lines. If $m \neq n$, then m is parallel to n if $m \cap n$ is an empty set. If $m=n$, m is parallel to itself.
(b) Consider $\mathcal{S}=\{1,2,3,4,5\}$ and $\mathcal{L}=\left\{l_{i j}=\{i, j\}: 1 \leq i<j \leq 5\right\}$. Then l_{12} is parallel to l_{45} and l_{45} is parallel to l_{23}, however l_{12} is not parallel to l_{23}. It shows that transitivity does not hold for parallelism and so parallelism does not give an equivalence relation on \mathcal{L}.
3. (a) (i) Let $a \in \mathbb{R}$, since $a-a=0 \in \mathbb{Z}$, so $a \sim a$.
(ii) Let $a, b \in \mathbb{R}$ and $a \sim b$. Then $b-a \in \mathbb{Z}$, which implies that $a-b=-(b-a) \in \mathbb{Z}$ and so $b \sim a$.
(iii) Let $a, b, c \in \mathbb{R}$ such that $a \sim b$ and $b \sim c$. Then $b-a, c-b \in \mathbb{Z}$. Therefore, $c-a=$ $(b-a)+(c-b) \in \mathbb{Z}$. Hence, $a \sim c$.
Therefore, \sim is an equivalence relation on \mathbb{R}^{2}.
(b) $\mathbb{R} / \sim=\{[(x, y)]: 0 \leq x<1\}$.
4. (a) Suppose the contrary, there exists a line l which contains all points. Then, there exist no three noncollinear points which violates axiom I3. Therefore, there exists at least one point P that does not lie on l.
(b) Let l be a line.

By axiom I2, there are two distinct points B_{1} and B_{2} on l.
By axiom B2, there exists B_{3} on l such that $B_{1} * B_{2} * B_{3}$. By using axiom $\mathbf{B 3}$ repeatly, we show that there is an infinite sequence of points B_{n} so that $B_{n} * B_{n+1} * B_{n+2}$ for all natural numbers n.
(c) We claim that there exists a line l which does not contain A.

By axiom I3, there exist three noncollinear points R, S and T.
(Case 1) $A \in\{R, S, T\}$
Without loss of generality, let $R=A$.
By axiom I1, there exists unique line $l_{S T}$ such that $S, T \in l_{S T}$.
Note that $l_{S T}$ does not contain A, otherwise it contradicts to the assumption that A, S and T are noncollinear.
(Case 2) $A \notin\{R, S, T\}$
By axiom I1, there exists unique lines $l_{S T}$ such that $S, T \in l_{S T}$.
If A does not lie on $l_{S T}$, then $l_{S T}$ is the line required.
If $A \in l_{S T}$. By axiom I1, there exists unique line $l_{R S}$ such that $R, S \in l_{R S}$.
If A lies on $l_{R S}$, then both A and S lie on $l_{S T}$ and $l_{A S}$. By axiom $\mathbf{I 1}, l_{S T}=l_{A S}$ which is a line that contains R, S and T (Contradiction).
Therefore, A does not lie on $l_{S T}$
Then by (b), there are infinitely many points on l. For each point $X \in l$, by axiom $\mathbf{I} 1$, there exists a unique line $l_{A X}$ such that $A, X \in l_{A X}$.
We also note that if X and Y are distinct point, then $l_{A X} \neq l_{A Y}$. Otherwise, $X, Y \in l_{A X}=l_{A Y}$ which forces that $l_{A X}=l_{A Y}=l$ which contradicts to the fact that $A \notin l$.
Therefore, there are infinitely many lines passing through A.

